Supervised and Unsupervised Learning: A Quick Guide for Beginners

8:52 am
October 18, 2021
cogent infotech
Dallas, TX
Cogent University

Supervised and Unsupervised Learning: A Quick Guide for Beginners

Supervised and unsupervised learning form the core of machine learning (ML). It is difficult to move forward in the ML journey without knowing the concepts well.

This article will walk you through the two different concepts of Supervised and unsupervised learning and the use cases where they are best suited. 

What is Supervised Learning? 

As the name suggests, supervised learning has a supervisor as a teacher. In supervised learning, computers learn using well-labeled data. Labeled data indicates that the output variable has already been marked as the correct answer, and a machine then predicts the output based on the labeled data. 

Supervised learning is classified into two types: Classification and Regression. 


Classification is used for problems where the output variable is a category. For example, ''spam'', ''not spam'', ''yes'', ''no'', etc.


Regression is used for problems where the output variable is a continuous one. For example, ‘’dollars’’, ‘’liters’’, etc. 

Applications of Supervised Learning:

Supervised learning has many practical applications, such as: 

  • Face detection
  • Spam detection
  • Forecasting 
  • Handwriting detection
  • Speech recognition

What is Unsupervised Learning? 

As the name suggests, unsupervised learning is where the machine is trained without using labeled data and allows the algorithm to act without any guidance. In unsupervised learning, the machine sorts information according to patterns, similarities, and differences without prior training. 

Unsupervised learning is classified into two types: Clustering and Association.


Clustering is used for problems where users want to discover the inherent grouping of data. An example is grouping customers according to their buying behaviors.


An association algorithm is used when users need to figure out the rules that account for a large percentage of data. For example, customers who bought X also bought Y. 

Applications of Unsupervised Learning 

Unsupervised learning is used in many real-life situations, such as 

  • Customer segmentation: Segmenting customers based on age, buying behavior, gender, etc.
  • Genetics: Finding DNA patterns
  • Newer image classification methods
  • Malware detection

Supervised vs Unsupervised Learning 

Wrapping Up 

In supervised learning, labeled data is provided to machines to train their algorithms. In unsupervised learning, the machine has to discover patterns for itself. 
If you’re interested in learning more about how ML solutions can empower businesses, visit Cogent Infotech here.


This is some text inside of a div block.

What’s a Rich Text element?

The rich text element allows you to create and format headings, paragraphs, blockquotes, images, and video all in one place instead of having to add and format them individually. Just double-click and easily create content.

Static and dynamic content editing

A rich text element can be used with static or dynamic content. For static content, just drop it into any page and begin editing. For dynamic content, add a rich text field to any collection and then connect a rich text element to that field in the settings panel. Voila!

How to customize formatting for each rich text

Headings, paragraphs, blockquotes, figures, images, and figure captions can all be styled after a class is added to the rich text element using the "When inside of" nested selector system.

Related Resources